If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-2x-210=0
a = 2; b = -2; c = -210;
Δ = b2-4ac
Δ = -22-4·2·(-210)
Δ = 1684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1684}=\sqrt{4*421}=\sqrt{4}*\sqrt{421}=2\sqrt{421}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{421}}{2*2}=\frac{2-2\sqrt{421}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{421}}{2*2}=\frac{2+2\sqrt{421}}{4} $
| 6x-17=x+6 | | w/3-16=-13 | | 2x+3x=8-3 | | 50-x=266 | | 3x-5/7+x+1/5=2 | | 5n+7=7(n+2)+2n | | 1/5x+5=25 | | 11x-2=10x+3 | | 6a=a+45 | | z/2+7=9 | | 6=z/5+4 | | 2(t+2)=6 | | 2(x+3)-2=10 | | -8x+5=-7x-6 | | 3.2z(1000)-2.17(1000)=8.326(1000) | | -4t+2=10 | | x/7000000=400/500 | | 3n-14=43 | | x^2+2/7x+120/7=0 | | t+28=2t | | 2p-1=7 | | 7n=2n+750 | | Q=C(v1-v2) | | -3(-4-b)=1/3(b+12) | | F(x)=-0.0781x+4.0253x12.605 | | s+24=2s | | 9x-5x+x=3 | | 0.9+x+3x+0.16+0.21+0.30=1 | | 10x+30=30 | | 5x-x+2=12 | | 8+b=1/3b | | -4(r+6)=-74 |